A variable can either be a name or an indexed name. See examples.

add_variable(.model, .variable, ..., type = "continuous", lb = -Inf,
  ub = Inf)

add_variable_(.model, .variable, ..., type = "continuous", lb = -Inf,
  ub = Inf, .dots)

Arguments

.model
the model
.variable
the variable name/definition
...
quantifiers for the indexed variable. Including filters
type
must be either continuous, integer or binary
lb
the lower bound of the variable
ub
the upper bound of the variable
.dots
Used to work around non-standard evaluation.

Examples

library(magrittr) MIPModel() %>% add_variable(x) %>% # creates 1 variable named x add_variable(y[i], i = 1:10, i %% 2 == 0, type = "binary") # creates 4 variables
#> Mixed linear integer optimization problem #> Variables: #> Continuous: 1 #> Integer: 0 #> Binary: 5 #> No objective function. #> Constraints: 0